'Smart' material enables novel applications in <span style='color:red'>autonomous driving</span> and robotics
  Liquid crystal shells have several properties that could be utilised within the autonomous and robotics markets, claim scientists from the University of Luxembourg.  The team discovered that as these shells reflect light highly selectively, they can be arranged into patterns that are readable for machines, akin to a QR code, adding coded information to objects.  "These patterns could be used to guide autonomous vehicles or to instruct robots when handling workpieces in a factory. This could become important especially in indoors applications where GPS devices don't work," Professor Jan Lagerwall of the University of Luxembourg explains.  According to the scientists, the shells can be manufactured to reflect only certain wavelengths of light, such as infrared, that would be invisible to the human eye. As the liquid crystal shells reflect light "omnidirectionally" meaning that beholders see the same pattern regardless of their position and viewing angle, the patterns can even be read by moving objects.  Additionally, the team say th shells can be manufactured in a way that they change their structure when they are exposed to certain external impacts, such as pressure, heat or specific chemicals.  The belief is that, together with computers to interpret these changes, the shells could be used as sensors. For example, implemented as pressure sensors in the fingertips of robots, enabling tactile feeling – a current challenge in robotics engineering.  Another application could be fire exit signage on walls inside buildings that only becomes visible when the temperature exceeds a certain threshold. The big advantage of these sensors, according to the team, is that they passively react to external impacts and don't need electricity and batteries.  The team also believe that liquid crystal shells could be used to prevent counterfeiting. The micropatterns that emerge when the shells are brought together are said to be “unique and impossible to copy.” These unclonable patterns could be used to create uncopiable identifiers that can be attached to valuable objects. In combination with cryptographic tools they could be used to create a system that ensures that a buyer or user has the original and not a counterfeited product.  Prof. Lagerwall makes clear that the ideas require further research, but the hope is that the article can "stimulate future research”.
Release time:2018-06-22 00:00 reading:2373 Continue reading>>

Turn to

/ 1

  • Week of hot material
  • Material in short supply seckilling
model brand Quote
MC33074DR2G onsemi
RB751G-40T2R ROHM Semiconductor
TL431ACLPR Texas Instruments
BD71847AMWV-E2 ROHM Semiconductor
CDZVT2R20B ROHM Semiconductor
model brand To snap up
IPZ40N04S5L4R8ATMA1 Infineon Technologies
BP3621 ROHM Semiconductor
STM32F429IGT6 STMicroelectronics
ESR03EZPJ151 ROHM Semiconductor
BU33JA2MNVX-CTL ROHM Semiconductor
TPS63050YFFR Texas Instruments
Hot labels
ROHM
IC
Averlogic
Intel
Samsung
IoT
AI
Sensor
Chip
About us

Qr code of ameya360 official account

Identify TWO-DIMENSIONAL code, you can pay attention to

AMEYA360 mall (www.ameya360.com) was launched in 2011. Now there are more than 3,500 high-quality suppliers, including 6 million product model data, and more than 1 million component stocks for purchase. Products cover MCU+ memory + power chip +IGBT+MOS tube + op amp + RF Bluetooth + sensor + resistor capacitance inductor + connector and other fields. main business of platform covers spot sales of electronic components, BOM distribution and product supporting materials, providing one-stop purchasing and sales services for our customers.

Please enter the verification code in the image below:

verification code